Updated on 2025/06/19

写真b

 
MUKAI Takahito
 
*Items subject to periodic update by Rikkyo University (The rest are reprinted from information registered on researchmap.)
Affiliation*
College of Science
Title*
Assistant Professor
Research Interests
  • tRNA

  • Bioinformatics

  • non-canonical amino acids

  • The genetic code

  • Synthetic biology

  • Campus Career*
    • 4 2023 - Present 
      College of Science   Assistant Professor
    • 4 2018 - 3 2023 
      College of Science   Department of Life Science   Assistant Professor
    Profile
    研究テーマは,遺伝暗号の人為的改変と,自然界における特殊な遺伝暗号の探索です.生命の起源と可能性を追い求めています.
     

    Research Areas

    • Life Science / Genome biology

    Research History

    • 4 2018 - Present 
      Rikkyo University   Department of Life Science, College of Science

      More details

    • 4 2016 - 3 2018 
      Yale大学   Department of Molecular Biophysics and Biochemistry   日本学術振興会 海外特別研究員 (Yale大学においては、平成28年度中はPostdoctoral Fellowの身分で、平成29年度からはAssociate Research Scientistの身分)

      More details

    • 6 2014 - 3 2016 
      Yale大学   Department of Molecular Biophysics and Biochemistry   ポスドク

      More details

    • 4 2012 - 5 2014 
      理化学研究所   生命分子システム基盤研究領域(平成25年度から改組してライフサイエンス技術基盤研究センター)   基礎科学特別研究員

      More details

    • 4 2011 - 3 2012 
      理化学研究所   生命分子システム基盤研究領域   特別研究員

      More details

    • 4 2008 - 3 2011 
      東京大学大学院   理学系研究科生物化学専攻   日本学術振興会特別研究員DC1

      More details

    ▼display all

    Education

    • 4 2006 - 3 2011 
      東京大学大学院   理学系研究科   生物化学専攻

      More details

    • 4 2002 - 3 2006 
      The University of Tokyo

      More details

    Papers

    • Recoding UAG to selenocysteine in Saccharomyces cerevisiae Peer-reviewed

      Kyle S Hoffman, Christina Z Chung, Takahito Mukai, Natalie Krahn, Han-Kai Jang, Nileeka Balasuriya, Patrick O'Donoghue, Dieter Söll

      RNA   rna.079658.123 - rna.079658.123   6 6 2023

      More details

      Language:English   Publishing type:Research paper (scientific journal)   Publisher:Cold Spring Harbor Laboratory  

      Unique chemical and physical properties are introduced by inserting selenocysteine (Sec) at specific sites within proteins. Recombinant and facile production of eukaryotic selenoproteins would benefit from a yeast expression system, however, the selenoprotein biosynthetic pathway was lost in the evolution of the kingdom Fungi as it diverged from its eukaryotic relatives. Based on our previous development of efficient selenoprotein production in bacteria, we designed a novel selenocysteine biosynthesis pathway in Saccharomyces cerevisiae using Aeromonas salmonicida translation components. S. cerevisiae tRNASer was mutated to resemble A. salmonicida tRNASec to allow recognition by S. cerevisiae seryl-tRNA synthetase as well as A. salmonicida selenocysteine synthase (SelA) and selenophosphate synthetase (SelD). Expression of these selenocysteine pathway components was then combined with metabolic engineering of yeast to enable the production of active methionine sulfate reductase enzyme containing genetically encoded selenocysteine. Our report is the first demonstration that yeast is capable of selenoprotein production by site-specific incorporation of selenocysteine.

      DOI: 10.1261/rna.079658.123

      researchmap

    • Ancestral Archaea Expanded the Genetic Code with Pyrrolysine Peer-reviewed

      Li-Tao Guo, Kazuaki Amikura, Han-Kai Jiang, Takahito Mukai, Xian Fu, Yane-Shih Wang, Patrick O’Donoghue, Dieter Söll, Jeffery M. Tharp

      Journal of Biological Chemistry   102521 - 102521   9 2022

      More details

      Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

      DOI: 10.1016/j.jbc.2022.102521

      researchmap

    • Enzymatic Supercoiling of Bacterial Chromosomes Facilitates Genome Manipulation Peer-reviewed

      Hironobu Fujita, Ayane Osaku, Yuto Sakane, Koki Yoshida, Kayoko Yamada, Seia Nara, Takahito Mukai, Masayuki Su’etsugu

      ACS Synthetic Biology   23 8 2022

      More details

      Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Chemical Society (ACS)  

      DOI: 10.1021/acssynbio.2c00353

      researchmap

    • The tRNA discriminator base defines the mutual orthogonality of two distinct pyrrolysyl-tRNA synthetase/tRNAPyl pairs in the same organism Peer-reviewed

      Haolin Zhang, Xuemei Gong, Qianqian Zhao, Takahito Mukai, Oscar Vargas-Rodriguez, Huiming Zhang, Yuxing Zhang, Paul Wassel, Kazuaki Amikura, Julie Maupin-Furlow, Yan Ren, Xun Xu, Yuri I Wolf, Kira S Makarova, Eugene V Koonin, Yue Shen, Dieter Söll, Xian Fu

      Nucleic Acids Research   25 4 2022

      More details

      Language:English   Publishing type:Research paper (scientific journal)   Publisher:Oxford University Press (OUP)  

      Abstract

      Site-specific incorporation of distinct non-canonical amino acids into proteins via genetic code expansion requires mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs are ideal for genetic code expansion and have been extensively engineered for developing mutually orthogonal pairs. Here, we identify two novel wild-type PylRS/tRNAPyl pairs simultaneously present in the deep-rooted extremely halophilic euryarchaeal methanogen Candidatus Methanohalarchaeum thermophilum HMET1, and show that both pairs are functional in the model halophilic archaeon Haloferax volcanii. These pairs consist of two different PylRS enzymes and two distinct tRNAs with dissimilar discriminator bases. Surprisingly, these two PylRS/tRNAPyl pairs display mutual orthogonality enabled by two unique features, the A73 discriminator base of tRNAPyl2 and a shorter motif 2 loop in PylRS2. In vivo translation experiments show that tRNAPyl2 charging by PylRS2 is defined by the enzyme's shortened motif 2 loop. Finally, we demonstrate that the two HMET1 PylRS/tRNAPyl pairs can simultaneously decode UAG and UAA codons for incorporation of two distinct noncanonical amino acids into protein. This example of a single base change in a tRNA leading to additional coding capacity suggests that the growth of the genetic code is not yet limited by the number of identity elements fitting into the tRNA structure.

      DOI: 10.1093/nar/gkac271

      researchmap

    • Indirect Routes to Aminoacyl-tRNA: The Diversity of Prokaryotic Cysteine Encoding Systems Peer-reviewed

      Takahito Mukai, Kazuaki Amikura, Xian Fu, Dieter Söll, Ana Crnković

      Frontiers in Genetics12   3 1 2022

      More details

      Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Frontiers Media SA  

      Universally present aminoacyl-tRNA synthetases (aaRSs) stringently recognize their cognate tRNAs and acylate them with one of the proteinogenic amino acids. However, some organisms possess aaRSs that deviate from the accurate translation of the genetic code and exhibit relaxed specificity toward their tRNA and/or amino acid substrates. Typically, these aaRSs are part of an indirect pathway in which multiple enzymes participate in the formation of the correct aminoacyl-tRNA product. The indirect cysteine (Cys)-tRNA pathway, originally thought to be restricted to methanogenic archaea, uses the unique <italic>O</italic>-phosphoseryl-tRNA synthetase (SepRS), which acylates the non-proteinogenic amino acid <italic>O</italic>-phosphoserine (Sep) onto tRNA<sup>Cys</sup>. Together with Sep-tRNA:Cys-tRNA synthase (SepCysS) and the adapter protein SepCysE, SepRS forms a transsulfursome complex responsible for shuttling Sep-tRNA<sup>Cys</sup> to SepCysS for conversion of the tRNA-bound Sep to Cys. Here, we report a comprehensive bioinformatic analysis of the diversity of indirect Cys encoding systems. These systems are present in more diverse groups of bacteria and archaea than previously known. Given the occurrence and distribution of some genes consistently flanking SepRS, it is likely that this gene was part of an ancient operon that suffered a gradual loss of its original components. Newly identified bacterial SepRS sequences strengthen the suggestion that this lineage of enzymes may not rely on the m<sup>1</sup>G37 identity determinant in tRNA. Some bacterial SepRSs possess an N-terminal fusion resembling a threonyl-tRNA synthetase editing domain, which interestingly is frequently observed in the vicinity of archaeal SepCysS genes. We also found several highly degenerate SepRS genes that likely have altered amino acid specificity. Cross-analysis of selenocysteine (Sec)-utilizing traits confirmed the co-occurrence of SepCysE and the Sec-utilizing machinery in archaea, but also identified an unusual <italic>O</italic>-phosphoseryl-tRNA<sup>Sec</sup> kinase fusion with an archaeal Sec elongation factor in some lineages, where it may serve in place of SepCysE to prevent crosstalk between the two minor aminoacylation systems. These results shed new light on the variations in SepRS and SepCysS enzymes that may reflect adaptation to lifestyle and habitat, and provide new information on the evolution of the genetic code.

      DOI: 10.3389/fgene.2021.794509

      researchmap

    • Grand scale genome manipulation via chromosome swapping in Escherichia coli programmed by three one megabase chromosomes Peer-reviewed International journal

      Tatsuya Yoneji, Hironobu Fujita, Takahito Mukai, Masayuki Su’etsugu

      Nucleic Acids Research   4 2021

      More details

      Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Oxford University Press (OUP)  

      In bacterial synthetic biology, whole genome transplantation has been achieved only in mycoplasmas that contain a small genome and are competent for foreign genome uptake. In this study, we developed Escherichia coli strains programmed by three 1-megabase (Mb) chromosomes by splitting the 3-Mb chromosome of a genome-reduced strain. The first split-chromosome retains the original replication origin (oriC) and partitioning (par) system. The second one has an oriC and the par locus from the F plasmid, while the third one has the ori and par locus of the Vibrio tubiashii secondary chromosome. The tripartite-genome cells maintained the rod-shaped form and grew only twice as slowly as their parent, allowing their further genetic engineering. A proportion of these 1-Mb chromosomes were purified as covalently closed supercoiled molecules with a conventional alkaline lysis method and anion exchange columns. Furthermore, the second and third chromosomes could be individually electroporated into competent cells. In contrast, the first split-chromosome was not able to coexist with another chromosome carrying the same origin region. However, it was exchangeable via conjugation between tripartite-genome strains by using different selection markers. We believe that this E. coli-based technology has the potential to greatly accelerate synthetic biology and synthetic genomics.

      DOI: 10.1093/nar/gkab298

      PubMed

      researchmap

    • Bioinformatic Prediction of an tRNASec Gene Nested inside an Elongation Factor SelB Gene in Alphaproteobacteria Invited Peer-reviewed

      Takahito Mukai

      IJMS22 ( 9 ) 4605   4 2021

      More details

      Authorship:Lead author, Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

      researchmap

    • Rational Design of Aptamer-Tagged tRNAs Invited Peer-reviewed

      Takahito Mukai

      IJMS21 ( 20 ) 7793   10 2020

      More details

      Authorship:Lead author, Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

      researchmap

    • Overcoming the Challenges of Megabase-Sized Plasmid Construction in Escherichia coli Peer-reviewed

      Takahito Mukai, Tatsuya Yoneji, Kayoko Yamada, Hironobu Fujita, Seia Nara, Masayuki Su’etsugu

      ACS Synthetic Biology   27 5 2020

      More details

      Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Chemical Society (ACS)  

      DOI: 10.1021/acssynbio.0c00008

      researchmap

    • A cysteinyl-tRNA synthetase variant confers resistance against selenite toxicity and decreases selenocysteine misincorporation. Peer-reviewed

      Hoffman KS, Vargas-Rodriguez O, Bak DW, Mukai T, Woodward LK, Weerapana E, Söll D, Reynolds NM

      The Journal of biological chemistry   7 2019

      More details

    • Cell-Free Protein Synthesis Using S30 Extracts from <i>Escherichia coli</i> RFzero Strains for Efficient Incorporation of Non-Natural Amino Acids into Proteins. Invited Peer-reviewed International journal

      Adachi J, Katsura K, Seki E, Takemoto C, Shirouzu M, Terada T, Mukai T, Sakamoto K, Yokoyama S

      International journal of molecular sciences20 ( 3 )   1 2019

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      Cell-free protein synthesis is useful for synthesizing difficult targets. The site-specific incorporation of non-natural amino acids into proteins is a powerful protein engineering method. In this study, we optimized the protocol for cell extract preparation from the Escherichia coli strain RFzero-iy, which is engineered to lack release factor 1 (RF-1). The BL21(DE3)-based RFzero-iy strain exhibited quite high cell-free protein productivity, and thus we established the protocols for its cell culture and extract preparation. In the presence of 3-iodo-l-tyrosine (IY), cell-free protein synthesis using the RFzero-iy-based S30 extract translated the UAG codon to IY at various sites with a high translation efficiency of >90%. In the absence of IY, the RFzero-iy-based cell-free system did not translate UAG to any amino acid, leaving UAG unassigned. Actually, UAG was readily reassigned to various non-natural amino acids, by supplementing them with their specific aminoacyl-tRNA synthetase variants (and their specific tRNAs) into the system. The high incorporation rate of our RFzero-iy-based cell-free system enables the incorporation of a variety of non-natural amino acids into multiple sites of proteins. The present strategy to create the RFzero strain is rapid, and thus promising for RF-1 deletions of various E. coli strains genomically engineered for specific requirements.

      DOI: 10.3390/ijms20030492

      PubMed

      researchmap

    • Engineering an auto-maturing transglutaminase with enhanced thermostability by genetic code expansion with two codon reassignments Peer-reviewed

      Kazumasa Ohtake, Takahito Mukai, Fumie Iraha, Mihoko Takahashi, Ken-ichi Haruna, Masayo Date, Keiichi Yokoyama, Kensaku Sakamoto

      ACS Synthetic Biology   7 2018

      More details

      Language:English  

      DOI: 10.1021/acssynbio.8b00157

      researchmap

    • Recoding of the selenocysteine UGA codon by cysteine in the presence of a non-canonical tRNACys and elongation factor SelB Invited Peer-reviewed

      Oscar Vargas-Rodriguez, Markus Englert, Anna Merkuryev, Takahito Mukai, Dieter Söll

      RNA Biology   6 2018

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1080/15476286.2018.1474074

      researchmap

    • Eine einfache Methode zur Produktion von Selenoproteinen Invited Peer-reviewed

      Mukai T, Sevostyanova A, Suzuki T, Fu X, Söll D

      Angewandte Chemie   5 2018

      More details

      Language:German   Publishing type:Research paper (scientific journal)  

      DOI: 10.1002/ange.201713215

      researchmap

    • A facile method for producing selenocysteine‐containing proteins. Peer-reviewed

      Mukai T, Sevostyanova A, Suzuki T, Fu X, Söll D

      Angewandte Chemie International Editiondoi: 10.1002/anie.201713215   4 2018

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1002/anie.201713215

      PubMed

      researchmap

    • RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea Peer-reviewed

      Takahito Mukai, Ana Crnkovic, Takuya Umehara, Natalia N. Ivanova, Nikos C. Kyrpides, Dieter Soll

      MBIO8 ( 3 ) doi: 10.1128/mBio.00561-17   5 2017

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1128/mBio.00561-17

      PubMed

      researchmap

    • Transfer RNAs with novel cloverleaf structures Peer-reviewed

      Takahito Mukai, Oscar Vargas-Rodriguez, Markus Englert, H. James Tripp, Natalia N. Ivanova, Edward M. Rubin, Nikos C. Kyrpides, Dieter Soell

      NUCLEIC ACIDS RESEARCH45 ( 5 ) 2776 - 2785   3 2017

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1093/nar/gkw898

      PubMed

      researchmap

    • Bioinformatic Analysis Reveals Archaeal tRNA<sup>Tyr</sup> and tRNA<sup>Trp</sup> Identities in Bacteria. Invited Peer-reviewed

      Mukai T, Reynolds NM, Crnković A, Söll D

      Life (Basel, Switzerland)7 ( 1 )   2 2017

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.3390/life7010008

      PubMed

      researchmap

    • Rewriting the Genetic Code Invited Peer-reviewed

      Takahito Mukai, Marc J. Lajoie, Markus Englert, Dieter Soll

      ANNUAL REVIEW OF MICROBIOLOGY, VOL 7171 ( 1 ) 557 - 577   2017

      More details

      Language:English   Publishing type:Part of collection (book)  

      DOI: 10.1146/annurev-micro-090816-093247

      PubMed

      researchmap

    • Facile Recoding of Selenocysteine in Nature Peer-reviewed

      Takahito Mukai, Markus Englert, H. James Tripp, Corwin Miller, Natalia N. Ivanova, Edward M. Rubin, Nikos C. Kyrpides, Dieter Soell

      ANGEWANDTE CHEMIE-INTERNATIONAL EDITION55 ( 17 ) 5337 - 5341   4 2016

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1002/anie.201511657

      PubMed

      J-GLOBAL

      researchmap

    • Leichte Neucodierung von Selenocystein in der Natur. Invited Peer-reviewed

      Mukai T, Englert M, Tripp HJ, Miller C, Ivanova NN, Rubin EM, Kyrpides NC, Söll D

      Angewandte Chemie (Weinheim an der Bergstrasse, Germany)128 ( 17 ) 5423 - 5427   4 2016

      More details

      Language:German   Publishing type:Research paper (scientific journal)  

      DOI: 10.1002/ange.201511657

      PubMed

      researchmap

    • Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli Peer-reviewed

      Takahito Mukai, Atsushi Yamaguchi, Kazumasa Ohtake, Mihoko Takahashi, Akiko Hayashi, Fumie Iraha, Satoshi Kira, Tatsuo Yanagisawa, Shigeyuki Yokoyama, Hiroko Hoshi, Takatsugu Kobayashi, Kensaku Sakamoto

      Nucleic Acids Research43 ( 16 ) 8111 - 8122   18 9 2015

      More details

      Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1093/nar/gkv787

      PubMed

      researchmap

    • Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon Peer-reviewed

      Takahito Mukai, Hiroko Hoshi, Kazumasa Ohtake, Mihoko Takahashi, Atsushi Yamaguchi, Akiko Hayashi, Shigeyuki Yokoyama, Kensaku Sakamoto

      SCIENTIFIC REPORTS5   9699   5 2015

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1038/srep09699

      PubMed

      researchmap

    • Protein stabilization utilizing a redefined codon Peer-reviewed

      Kazumasa Ohtake, Atsushi Yamaguchi, Takahito Mukai, Hiroki Kashimura, Nobutaka Hirano, Mitsuru Haruki, Sosuke Kohashi, Kenji Yamagishi, Kazutaka Murayama, Yuri Tomabechi, Takashi Itagaki, Ryogo Akasaka, Masahito Kawazoe, Chie Takemoto, Mikako Shirouzu, Shigeyuki Yokoyama, Kensaku Sakamoto

      SCIENTIFIC REPORTS5   9762   5 2015

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1038/srep09762

      PubMed

      researchmap

    • Multiple Site-Specific Installations of N-epsilon-Monomethyl-L-Lysine into Histone Proteins by Cell-Based and Cell-Free Protein Synthesis Invited Peer-reviewed

      Tatsuo Yanagisawa, Mihoko Takahashi, Takahito Mukai, Shin Sato, Masatoshi Wakamori, Mikako Shirouzu, Kensaku Sakamoto, Takashi Umehara, Shigeyuki Yokoyama

      CHEMBIOCHEM15 ( 12 ) 1830 - 1838   8 2014

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1002/cbic.201402291

      PubMed

      researchmap

    • Efficient Decoding of the UAG Triplet as a Full-Fledged Sense Codon Enhances the Growth of a prfA-Deficient Strain of Escherichia coli Peer-reviewed

      Kazumasa Ohtake, Aya Sato, Takahito Mukai, Nobumasa Hino, Shigeyuki Yokoyama, Kensaku Sakamoto

      JOURNAL OF BACTERIOLOGY194 ( 10 ) 2606 - 2613   5 2012

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1128/JB.00195-12

      PubMed

      researchmap

    • Wide-range protein photo-crosslinking achieved by a genetically encoded N-epsilon-(benzyloxycarbonyl)lysine derivative with a diazirinyl moiety Peer-reviewed

      Tatsuo Yanagisawa, Nobumasa Hino, Fumie Iraha, Takahito Mukai, Kensaku Sakamoto, Shigeyuki Yokoyama

      MOLECULAR BIOSYSTEMS8 ( 4 ) 1131 - 1135   2012

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1039/c2mb05321g

      PubMed

      researchmap

    • Genetic-code evolution for protein synthesis with non-natural amino acids Peer-reviewed

      Takahito Mukai, Tatsuo Yanagisawa, Kazumasa Ohtake, Masatoshi Wakamori, Jiro Adachi, Nobumasa Hino, Aya Sato, Takatsugu Kobayashi, Akiko Hayashi, Mikako Shirouzu, Takashi Umehara, Shigeyuki Yokoyama, Kensaku Sakamoto

      BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS411 ( 4 ) 757 - 761   8 2011

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1016/j.bbrc.2011.07.020

      PubMed

      researchmap

    • (doctoral thesis) A study on the genetic-code flexibility by manipulation of the UAG codon-decoding molecules. Peer-reviewed

      Takahito Mukai

      The University of Tokyo   3 2011

      More details

      Language:Japanese   Publishing type:Doctoral thesis  

      researchmap

    • Genetic Incorporation of a Photo-Crosslinkable Amino Acid Reveals Novel Protein Complexes with GRB2 in Mammalian Cells Peer-reviewed

      Nobumasa Hino, Masaaki Oyama, Aya Sato, Takahito Mukai, Fumie Iraha, Akiko Hayashi, Hiroko Kozuka-Hata, Tadashi Yamamoto, Shigeyuki Yokoyama, Kensaku Sakamoto

      JOURNAL OF MOLECULAR BIOLOGY406 ( 2 ) 343 - 353   2 2011

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1016/j.jmb.2010.12.022

      PubMed

      researchmap

    • Codon reassignment in the Escherichia coli genetic code Peer-reviewed

      Takahito Mukai, Akiko Hayashi, Fumie Iraha, Aya Sato, Kazumasa Ohtake, Shigeyuki Yokoyama, Kensaku Sakamoto

      NUCLEIC ACIDS RESEARCH38 ( 22 ) 8188 - 8195   12 2010

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1093/nar/gkq707

      PubMed

      researchmap

    • Genetic encoding of non-natural amino acids in Drosophila melanogaster Schneider 2 cells Peer-reviewed

      Takahito Mukai, Motoaki Wakiyama, Kensaku Sakamoto, Shigeyuki Yokoyama

      PROTEIN SCIENCE19 ( 3 ) 440 - 448   3 2010

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1002/pro.322

      PubMed

      researchmap

    • Adding L-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases Peer-reviewed

      Takahito Mukai, Takatsugu Kobayashi, Nobumasa Hino, Tatsuo Yanagisawa, Kensaku Sakamoto, Shigeyuki Yokoyama

      BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS371 ( 4 ) 818 - 822   7 2008

      More details

      Language:English   Publishing type:Research paper (scientific journal)  

      DOI: 10.1016/j.bbrc.2008.04.164

      PubMed

      researchmap

    ▼display all

    Presentations

    • シンプル ゲノム合成 Invited

      向井崇人

      第17回日本ゲノム微生物学会年会  9 3 2023 

      More details

    • Designing the central dogma system of zombie cells Invited

      Mukai Takahito

      2 12 2022 

      More details

      Language:English   Presentation type:Symposium, workshop panel (nominated)  

      researchmap

    • Chromosome shuttling between cell-free systems and E. coli cells Invited

      Takahito Mukai

      The 3rd International BioDesign Research Conference  27 11 2022 

      More details

    • ゲノムのミライ 作れる細胞の設計

      向井 崇人

      第16回日本ゲノム微生物学会年会  2 3 2022 

      More details

      Presentation type:Oral presentation (general)  

      researchmap

    • 大腸菌ゲノムの分断化とポータブル化

      向井崇人, 末次正幸

      第17回21世紀大腸菌研究会  20 8 2021 

      More details

      Presentation type:Oral presentation (general)  

      researchmap

    • 大腸菌を用いた1 Mbプラスミドの構築と接合伝達

      向井崇人, 米司達哉, 末次正幸, 藤田裕寛

      第14回日本ゲノム微生物学会年会  8 3 2020  日本ゲノム微生物学会

      More details

      Language:Japanese   Presentation type:Oral presentation (general)  

      Venue:名古屋  

      新型コロナウイルス感染症対策の基本方針に基づき、年会を中止し、発表が行われたと認定

      researchmap

    • 地球規模メタゲノムデータの解析 SepRS、どこ行った? Invited

      向井 崇人

      第18回微生物研究会「微生物研究の新しい潮流」  9 11 2019 

      More details

      Language:Japanese  

      researchmap

    • Megabase cloning by utilizing E. coli chromosome vectors Invited

      Takahito Mukai

      ICG-14  26 10 2019 

      More details

      Language:English   Presentation type:Oral presentation (invited, special)  

      researchmap

    • Finding new genetic code deviations in the metagenomic era Invited

      Takahito Mukai

      mbsj2018  28 11 2018 

      More details

      Language:Japanese   Presentation type:Oral presentation (invited, special)  

      researchmap

    • A new chassis tRNA for genetic code expansion? International conference

      Takahito Mukai, Dieter Söll

      AARS2017  30 10 2017 

      More details

      Language:English   Presentation type:Oral presentation (general)  

      researchmap

    • A rare codon can be captured by a non-canonical amino acid. International conference

      Takahito Mukai, Kensaku Sakamoto

      The 25th tRNA Conference  9 2014 

      More details

      Language:English   Presentation type:Oral presentation (general)  

      researchmap

    • 細胞の遺伝暗号改変と、これからの課題 Invited

      向井崇人, 大竹和正, 坂本健作

      「細胞を創る」研究会5.0  11 2012 

      More details

      Language:Japanese   Presentation type:Oral presentation (general)  

      researchmap

    ▼display all

    Teaching Experience

    • 5 2020 - 7 2020 
      seimerigakuseminar2 ( Rikkyo University )

      More details

    •  
      生物化学2 ( 立教大学 )

      More details

    Professional Memberships

    • 1 2020 - Present 
      日本ゲノム微生物学会

      More details

    •  
      「細胞を創る」研究会

      More details

    Research Projects

    • ゾンビ細胞を用いたゲノム入れ替え法の開発

      日本学術振興会  科学研究費助成事業 基盤研究(C) 

      向井 崇人

      More details

      4 2023 - 3 2026

      Grant number:23K05743

      Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

      researchmap

    • 立体構造タグを用いたtRNA分子群の操作法の開発

      科研費  研究活動スタート支援 

      向井崇人

      More details

      8 2018 - 3 2020

      Authorship:Principal investigator  Grant type:Competitive

      researchmap

    • セレノシステイン/システイン遺伝暗号の全様解明

      日本学術振興会  海外特別研究員 

      向井崇人

      More details

      4 2016 - 3 2018

      Authorship:Principal investigator  Grant type:Competitive

      researchmap

    • 非天然型アミノ酸を用いて酵素活性をデザインするための基幹技術開発

      理化学研究所  基礎科学特別研究員 

      向井崇人

      More details

      4 2012 - 5 2014

      Authorship:Principal investigator  Grant type:Competitive

      researchmap

    • Sense Codon Reassignment

      JSPS  Grants-in-Aid for Young Scientists (B) 

      Takahito Mukai

      More details

      4 2012 - 3 2014

      Authorship:Principal investigator  Grant type:Competitive

      researchmap

    • 哺乳類細胞の遺伝暗号拡張によるタンパク質翻訳後修飾の細胞機能解明

      特別研究員奨励費(DC1) 

      向井崇人

      More details

      4 2008 - 3 2011

      Authorship:Principal investigator  Grant type:Competitive

      researchmap

    ▼display all

    Industrial property rights

    • COMPOSITIONS AND METHODS FOR MAKING SELENOCYSTEINE CONTAINING POLYPEPTIDES

      Dieter Söll, MUKAI, Takahito, HOFFMAN, Kyle

      More details

      Application no:PCT/US2018/054437  Date applied:4 10 2018

      Announcement no:特開WO/2019/071023  Date announced:11 4 2019

      Patent/Registration no:特許US11788111B2  Date registered:17 10 2023 

      researchmap

    • 機能性DNAカセット及びプラスミド(申請取り下げ)

      末次 正幸, 向井 崇人

      More details

      Application no:特願2022-006523  Date applied:19 1 2022

      researchmap

    • COMPOSITIONS AND METHODS FOR MAKING SELENOCYSTEINE CONTAINING POLYPEPTIDES

      Dieter Söll, Caroline Aldag, Michael Hohn, Takahito Mukai

      More details

      Application no:特願15/724678  Date applied:4 10 2017

      Announcement no:特開20180105854  Date announced:19 4 2018

      Patent/Registration no:特許US-10876142-B2  Date registered:29 12 2020 

      Rights holder:Yale University

      researchmap

    • 非天然タンパク質製造用の組換え細菌の作製方法、及びその利用

      横山 茂之, 向井 崇人, 坂本 健作, 松元 明子

      More details

      Applicant:国立研究開発法人理化学研究所

      Application no:特願2012-520488  Date applied:16 6 2011

      Patent/Registration no:特許第5858543号  Date issued:25 12 2015

      J-GLOBAL

      researchmap

    • アミノアシルtRNA合成酵素活性を有するポリペプチド及びその利用

      横山 茂之, 坂本 健作, 大木 健二, 向井 崇人

      More details

      Applicant:独立行政法人理化学研究所

      Application no:特願2009-024136  Date applied:4 2 2009

      Announcement no:特開2009-207490  Date announced:17 9 2009

      Patent/Registration no:特許第5585904号  Date issued:1 8 2014

      J-GLOBAL

      researchmap

    • エステル結合を含む非天然タンパク質の製造方法

      横山 茂之, 坂本 健作, 柳沢 達男, 向井 崇人, 小林 隆嗣

      More details

      Applicant:独立行政法人理化学研究所

      Application no:特願2009-542600  Date applied:21 11 2008

      Patent/Registration no:特許第5419220号  Date issued:29 11 2013

      J-GLOBAL

      researchmap

    • サプレッサーtRNAの合成方法、DNA構築物及びそれを用いた非天然型アミノ酸組み込みタンパク質の製造

      横山 茂之, 坂本 健作, 樋野 展正, 向井 崇人, 小林 隆嗣

      More details

      Applicant:独立行政法人理化学研究所

      Application no:特願2008-502740  Date applied:22 2 2007

      Patent/Registration no:特許第5196378号  Date issued:15 2 2013

      J-GLOBAL

      researchmap

    • METHOD FOR SYNTHESIS OF SUPPRESSOR tRNA, DNA CONSTRUCT, AND PRODUCTION OF PROTEIN HAVING NON-NATURAL AMINO ACID INTEGRATED THEREIN BY USING THE DNA CONSTRUCT

      Shigeyuki Yokoyama, Kensaku Sakamoto, Nobumasa Hino, Takahito Mukai, Takatsugu Kobayashi

      More details

      Patent/Registration no:特許EP1992698B1  Date issued:5 9 2018

      researchmap

    • Process for production of non-natural protein having ester bond therein

      Shigeyuki Yokoyama, Kensaku Sakamoto, Tatsuo Yanagisawa, Takahito Mukai, Takatsugu Kobayashi

      More details

      Patent/Registration no:特許US8785152B2  Date issued:22 7 2014

      researchmap

    • Process for production of non-natural protein having ester bond therein

      Shigeyuki Yokoyama, Kensaku Sakamoto, Tatsuo Yanagisawa, Takahito Mukai, Takatsugu Kobayashi

      More details

      Patent/Registration no:特許EP2221370B1  Date issued:16 4 2014

      researchmap

    • Polypeptide having activity of aminoacyl-tRNA synthetase and use thereof

      Shigeyuki Yokoyama, Kensaku Sakamoto, Kenji Oki, Takahito Mukai

      More details

      Patent/Registration no:特許US8293512B2  Date issued:23 10 2012

      researchmap

    • Method for constructing recombinant bacterium for producing non-native protein, and utilization of same

      Shigeyuki Yokoyama, Takahito Mukai, Kensaku Sakamoto, Akiko Matsumoto

      More details

      Patent/Registration no:特許US9340790B2  Date issued:17 5 2016

      researchmap

    • Method for constructing recombinant bacterium for producing non-native protein, and utilization of same

      Shigeyuki Yokoyama, Takahito Mukai, Kensaku Sakamoto, Akiko Matsumoto

      More details

      Patent/Registration no:特許EP2584037B1  Date issued:10 8 2016

      researchmap

    • Method of synthesizing a suppressor tRNA, DNA construct and use thereof for producing a non-natural amino acid-incorporated protein

      Shigeyuki Yokoyama, Kensaku Sakamoto, Nobumasa Hino, Takahito Mukai, Takatsugu Kobayashi

      More details

      Patent/Registration no:特許US8822180B2  Date issued:2 9 2014

      researchmap

    • Method of synthesizing a suppressor TRNA, DNA construct and use thereof for producing a protein including a non-natural amino acid

      Shigeyuki Yokoyama, Kensaku Sakamoto, Nobumasa Hino, Takahito Mukai, Takatsugu Kobayashi

      More details

      Patent/Registration no:特許US8168407B2  Date issued:1 5 2012

      researchmap

    ▼display all

    Media Coverage

    • 3分割したゲノムからなる大腸菌を作製、自由なゲノム出し入れを実現 ~モデル生物でのゲノムインストール技術~

      JST & 立教大学  4 2021

      More details

    • Proving the Genetic Code’s Flexibility

      3 2016

      More details

    • DNA情報の変換ルールを人為的に改変 -多様なアミノ酸を高い効率でタンパク質に導入することが可能に-

      理化学研究所  5 2015

      More details