Updated on 2024/04/18

写真b

 
YORO Emiko
 
*Items subject to periodic update by Rikkyo University (The rest are reprinted from information registered on researchmap.)
Affiliation*
College of Science Department of Life Science
Title*
Assistant Professor
Degree
博士(理学) ( 総合研究大学院大学 )
Campus Career*
  • 4 2020 - Present 
    College of Science   Department of Life Science   Assistant Professor
 

Research Areas

  • Life Science / Plant molecular biology and physiology

Research History

  • 4 2020 - Present 
    Rikkyo Univ.   College of Science

    More details

  • 4 2017 - 3 2019 
    Rikkyo University   College of Science

    More details

  • 4 2015 - 3 2017 
    私立学校法人 自由学園高等科   専任教諭

    More details

  • 4 2013 - 3 2015 
    日本学術振興会特別研究員DC2

    More details

Education

  • 4 2010 - 3 2015 
    The Graduate University for Advanced Studies   School of Life Science   Department of Basic Biology

    More details

  • 4 2006 - 3 2010 
    Rikkyo University   College of Science   Department of Life Science

    More details

Awards

  • 10 2013  
    18th International Congress on Nitrogen Fixation & Journal of Plant Physiology  Young Scientist Award 
     
    Emiko Yoro

    More details

  • 9 2012  
    植物微生物研究会  植物微生物研究会学生優秀発表賞 
     
    養老 瑛美子

    More details

  • 4 2010  
    公益財団法人吉田育英会  マスター21奨学生 
     
    養老 瑛美子

    More details

Papers

  • Sexual reproduction: Is the genetic pathway for female germ cell specification conserved in land plants?

    Emiko Yoro, Keiko Sakakibara

    Current Biology34 ( 6 ) R241 - R244   3 2024

    More details

    Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.cub.2024.01.062

    researchmap

  • Protocol: an improved method for inducing sporophyte generation in the model moss Physcomitrium patens under nitrogen starvation. International journal

    Emiko Yoro, Shizuka Koshimizu, Takashi Murata, Keiko Sakakibara

    Plant methods19 ( 1 ) 100 - 100   26 9 2023

    More details

    Language:English   Publishing type:Research paper (scientific journal)  

    BACKGROUND: Land plants exhibit a haplodiplontic life cycle, whereby multicellular bodies develop in both the haploid and diploid generations. The early-diverging land plants, known as bryophytes, have a haploid-dominant life cycle, in which a short-lived multicellular body in the diploid generation, known as the sporophyte, develops on the maternal haploid gametophyte tissues. The moss Physcomitrium (Physcomitrella) patens has become one of the most powerful model systems in evolutionary plant developmental studies. To induce diploid sporophytes of P. patens, several protocols are implemented. One of the conventional approaches is to grow approximately one-month-old gametophores for another month on Jiffy-7 pellets made from the peat moss that is difficult to fully sterilize. A more efficient method to obtain all tissues throughout the life cycle should accelerate studies of P. patens. RESULTS: Here, we investigated the effect of nitrogen conditions on the growth and development of P. patens. We provide an improved protocol for the sporophyte induction of P. patens using a BCD-based solid culture medium without Jiffy-7 pellets, based on the finding that the formation of gametangia and subsequent sporophytes is promoted by nitrogen-free growth conditions. The protocol consists of two steps; first, culture the protonemata and gametophores on nitrogen-rich medium under continuous light at 25 °C, and then transfer the gametophores onto nitrogen-free medium under short-day and at 15 °C for sporophyte induction. The protocol enables to shorten the induction period and reduce the culture space. CONCLUSIONS: Our more efficient and shortened protocol for inducing the formation of sporophytes will contribute to future studies into the fertilization or the diploid sporophyte generation of P. patens.

    DOI: 10.1186/s13007-023-01077-z

    PubMed

    researchmap

  • Phylogenetic distribution and expression pattern analyses identified a divergent basal body assembly protein involved in land plant spermatogenesis. International journal

    Shizuka Koshimizu, Naoki Minamino, Tomoaki Nishiyama, Emiko Yoro, Mayuko Sato, Mayumi Wakazaki, Kiminori Toyooka, Kazuo Ebine, Keiko Sakakibara, Takashi Ueda, Kentaro Yano

    The New phytologist236 ( 3 ) 1182 - 1196   16 7 2022

    More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Land plant spermatozoids commonly possess characteristic structures such as the spline, which consists of a microtubule array, the multilayered structure (MLS) in which the uppermost layer is a continuum of the spline, and multiple flagella. However, the molecular mechanisms underpinning spermatogenesis remain to be elucidated. We successfully identified candidate genes involved in spermatogenesis, deeply divergent BLD10s, by computational analyses combining multiple methods and omics data. We then examined the functions of BLD10s in the liverwort Marchantia polymorpha and the moss Physcomitrium patens. MpBLD10 and PpBLD10 are required for normal basal body (BB) and flagella formation. Mpbld10 mutants exhibited defects in remodeling of the cytoplasm and nucleus during spermatozoid formation, and thus MpBLD10 should be involved in chromatin reorganization and elimination of the cytoplasm during spermiogenesis. We identified orthologs of MpBLD10 and PpBLD10 in diverse Streptophyta and found that MpBLD10 and PpBLD10 are orthologous to BLD10/CEP135 family proteins, which function in BB assembly. However, BLD10s evolved especially quickly in land plants and MpBLD10 might have acquired additional functions in spermatozoid formation through rapid molecular evolution.

    DOI: 10.1111/nph.18385

    PubMed

    researchmap

  • CLE-HAR1 Systemic Signaling and NIN-Mediated Local Signaling Suppress the Increased Rhizobial Infection in the <i>daphne</i> Mutant of <i>Lotus japonicus</i> Peer-reviewed

    Emiko Yoro, Takuya Suzaki, Masayoshi Kawaguchi

    Molecular Plant-Microbe Interactions®33 ( 2 ) 320 - 327   2 2020

    More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Scientific Societies  

    <jats:p> Legumes survive in nitrogen-limited soil by forming a symbiosis with rhizobial bacteria. During root nodule symbiosis, legumes strictly control the development of their symbiotic organs, the nodules, in a process known as autoregulation of nodulation (AON). The study of hypernodulation mutants has elucidated the molecular basis of AON. Some hypernodulation mutants show an increase in rhizobial infection in addition to developmental alteration. However, the relationship between the AON and the regulation of rhizobial infection has not been clarified. We previously isolated daphne, a nodule inception (nin) allelic mutant, in Lotus japonicus. This mutant displayed dramatically increased rhizobial infection, suggesting the existence of NIN-mediated negative regulation of rhizobial infection. Here, we investigated whether the previously isolated components of AON, especially CLAVATA3/ESR (CLE)-RELATED-ROOT SIGNAL1 (CLE-RS1), CLE-RS2, and their putative receptor HYPERNODULATION AND ABERRANT ROOT FORMATION1 (HAR1), were able to suppress increased infection in the daphne mutant. The constitutive expression of LjCLE-RS1/2 strongly reduced the infection in the daphne mutant in a HAR1-dependent manner. Moreover, reciprocal grafting analysis showed that strong reduction of infection in daphne rootstock constitutively expressing LjCLE-RS1 was canceled by a scion of the har1 or klavier mutant, the genes responsible for encoding putative LjCLE-RS1 receptors. These data indicate that rhizobial infection is also systemically regulated by CLE-HAR1 signaling, a component of AON. In addition, the constitutive expression of NIN in daphne har1 double-mutant roots only partially reduced the rhizobial infection. Our findings indicate that the previously identified NIN-mediated negative regulation of infection involves unknown local signaling, as well as CLE-HAR1 long-distance signaling. </jats:p>

    DOI: 10.1094/mpmi-08-19-0223-r

    researchmap

  • PLENTY, a hydroxyproline O-arabinosyltransferase, negatively regulates root nodule symbiosis in Lotus japonicus. Peer-reviewed

    Yoro E, Nishida H, Ogawa-Ohnishi M, Yoshida C, Suzaki T, Matsubayashi Y, Kawaguchi M

    Journal of experimental botany70 ( 2 ) 507 - 517   1 2019

    More details

    Publishing type:Research paper (scientific journal)   Publisher:Oxford University Press (OUP)  

    DOI: 10.1093/jxb/ery364

    PubMed

    researchmap

  • Leguminous Plants: Inventors of Root Nodules to Accommodate Symbiotic Bacteria Peer-reviewed

    Takuya Suzaki, Emiko Yoro, Masayoshi Kawaguchi

    INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY, VOL 316316   111 - 158   2015

    More details

    Language:English   Publishing type:Part of collection (book)   Publisher:ELSEVIER ACADEMIC PRESS INC  

    Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.

    DOI: 10.1016/bs.ircmb.2015.01.004

    PubMed

    researchmap

  • A Positive Regulator of Nodule Organogenesis, NODULE INCEPTION, Acts as a Negative Regulator of Rhizobial Infection in Lotus japonicus Peer-reviewed

    Emiko Yoro, Takuya Suzaki, Koichi Toyokura, Hikota Miyazawa, Hidehiro Fukaki, Masayoshi Kawaguchi

    PLANT PHYSIOLOGY165 ( 2 ) 747 - 758   6 2014

    More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC PLANT BIOLOGISTS  

    Legume-rhizobium symbiosis occurs in specialized root organs called nodules. To establish the symbiosis, two major genetically controlled events, rhizobial infection and organogenesis, must occur. For a successful symbiosis, it is essential that the two phenomena proceed simultaneously in different root tissues. Although several symbiotic genes have been identified during genetic screenings of nonsymbiotic mutants, most of the mutants harbor defects in both infection and organogenesis pathways, leading to experimental difficulty in investigating the molecular genetic relationships between the pathways. In this study, we isolated a novel nonnodulation mutant, daphne, in Lotus japonicus that shows complete loss of nodulation but a dramatically increased numbers of infection threads. Characterization of the locus responsible for these phenotypes revealed a chromosomal translocation upstream of NODULE INCEPTION (NIN) in daphne. Genetic analysis using a known nin mutant revealed that daphne is a novel nin mutant allele. Although the daphne mutant showed reduced induction of NIN after rhizobial infection, the spatial expression pattern of NIN in epidermal cells was broader than that in the wild type. Overexpression of NIN strongly suppressed hyperinfection in daphne, and daphne phenotypes were partially rescued by cortical expression of NIN. These observations suggested that the daphne mutation enhanced the role of NIN in the infection pathway due to a specific loss of the role of NIN in nodule organogenesis. Based on these results, we provide evidence that the bifunctional transcription factor NIN negatively regulates infection but positively regulates nodule organogenesis during the course of the symbiosis.

    DOI: 10.1104/pp.113.233379

    PubMed

    researchmap

  • Endoreduplication-mediated initiation of symbiotic organ development in Lotus japonicus Peer-reviewed

    Takuya Suzaki, Momoyo Ito, Emiko Yoro, Shusei Sato, Hideki Hirakawa, Naoya Takeda, Masayoshi Kawaguchi

    DEVELOPMENT141 ( 12 ) 2441 - 2445   6 2014

    More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:COMPANY OF BIOLOGISTS LTD  

    Many leguminous plants have a unique ability to reset and alter the fate of differentiated root cortical cells to form new organs of nitrogen-fixing root nodules during legume-Rhizobium symbiosis. Recent genetic studies on the role of cytokinin signaling reveal that activation of cytokinin signaling is crucial to the nodule organogenesis process. However, the genetic mechanism underlying the initiation of nodule organogenesis is poorly understood due to the low number of genes that have been identified. Here, we have identified a novel nodulation-deficient mutant named vagrant infection thread 1 (vag1) after suppressor mutant screening of spontaneous nodule formation 2, a cytokinin receptor gain-of-function mutant in Lotus japonicus. The VAG1 gene encodes a protein that is putatively orthologous to Arabidopsis ROOT HAIRLESS 1/HYPOCOTYL 7, a component of the plant DNA topoisomerase VI that is involved in the control of endoreduplication. Nodule phenotype of the vag1 mutant shows that VAG1 is required for the ploidy-dependent cell growth of rhizobial-infected cells. Furthermore, VAG1 mediates the onset of endoreduplication in cortical cells during early nodule development, which may be essential for the initiation of cortical cell proliferation that leads to nodule primordium formation. In addition, cortical infection is severely impaired in the vag1 mutants, whereas the epidermal infection threads formation is normal. This suggests that the VAG1-mediated endoreduplication of cortical cells may be required for the guidance of symbiotic bacteria to host meristematic cells.

    DOI: 10.1242/dev.107946

    PubMed

    researchmap

  • Hairy Root Transformation in Lotus japonicus Peer-reviewed

    Satoru Okamoto, Emiko Yoro, Takuya Suzaki, Masayoshi Kawaguchi

    BIO-PROTOCOL3   e795   6 2013

    More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.21769/bioprotoc.795

    researchmap

▼display all

Misc.

  • 根粒初期発生における細胞リプログラミングの制御機構

    寿崎拓哉, 寿崎拓哉, 伊藤百代, 西田帆那, 西田帆那, 養老瑛美子, 養老瑛美子, 佐藤修正, 佐藤修正, 平川英樹, 武田直也, 武田直也, 川口正代, 川口正代

    日本植物学会大会研究発表記録77th   2013

    More details

Teaching Experience

  •  
    卒業研究 ( 立教大学 )

    More details

  •  
    生命理学実験 ( 立教大学 )

    More details

  •  
    生物学実験(物) ( 立教大学 )

    More details

  •  
    生命理学ゼミナール 2 ( 立教大学 )

    More details

  •  
    生命理学基礎実験 ( 立教大学 )

    More details

Professional Memberships

Research Projects

  • Genomic dynamics underlying the plastic hermaphroditism in plants: the basis of exploratory reproductive adaptations

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Transformative Research Areas (A) 

    More details

    6 2022 - 3 2027

    Grant number:22H05172

    Grant amount:\317590000 ( Direct Cost: \244300000 、 Indirect Cost:\73290000 )

    researchmap

  • Sex determination mechanisms underlying evolution of hermaphrodites in haploid generation

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Transformative Research Areas (A) 

    More details

    6 2022 - 3 2027

    Grant number:22H05177

    Grant amount:\99970000 ( Direct Cost: \76900000 、 Indirect Cost:\23070000 )

    researchmap

  • ヒメツリガネゴケ生殖器官の雌雄決定機構の解明

    日本学術振興会  科学研究費助成事業 若手研究 

    小田原 瑛美子

    More details

    4 2022 - 3 2024

    Grant number:22K15146

    Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )

    researchmap

  • 有限成長するコケ植物2倍体メリステムの維持機構の解明

    日本学術振興会  科学研究費助成事業 若手研究 

    小田原 瑛美子

    More details

    4 2020 - 3 2022

    Grant number:20K15821

    Grant amount:\3250000 ( Direct Cost: \2500000 、 Indirect Cost:\750000 )

    陸上植物の基部に位置するコケ植物は1倍体が優占的であるが、被子植物は2倍体が優占的である。この陸上植物の進化過程における、生活環に占める核相の割合逆転の要因の一つに、2倍体世代のメリステムが有限型から無限型への転換が推測される。そこで、コケ植物ヒメツリガネゴケの2倍体メリステムの有限性を規定する分子機構を明らかにすることを目指してきた。既にNIN-like protein(NLP)相同遺伝子の一つ、PpNLPaが、2倍体メリステムの形成制御に関わる可能性を見出していた。
    令和2年度は、PpNLPaのプロモーター領域をレポーター遺伝子接続したコンストラクトをヒメツリガネゴケゲノム上のニュートラルサイトに導入した株を作製し、PpNLPa が2倍体のメリステム付近と足で発現することを同定した。また、CRISPR-Cas9系を用いたゲノム編集によりPpNLPaのDNA結合ドメインを破壊したPpNLPa変異株2株を取得し、2倍体メリステムが拡大する表現型を再現した。
    そこで、令和3年度は、PpNLPaの機能抑制およびPpNLPaのCRISPR変異株における2倍体メリステムが拡大する表現型に着目し、細胞分裂に関わる遺伝子のプロモーターレポーターラインとの交配を進め、2倍体メリステムが拡大と細胞分裂の関係の解析を進めた。その結果、2倍体メリステムが拡大する変異株では、細胞分裂活性の持続が認められた。
    また、令和3年度は、PpNLPa機能抑制株とPpNLPa-YFP過剰発現株、野生株からそれぞれ若い胞子体を含む組織からRNAを抽出し、RNAシークエンスを委託実施した。現在その生データを解析中である。PpNLPa機能抑制株とPpNLPa-YFP過剰発現株変動で相反する発現変動を示す遺伝子を抽出し、2倍体メリステム維持に関わる最有力候補として同定を目指す。

    researchmap

  • Elucidation of common regulatory mechanisms for nodule and meristem development

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B) 

    Kawaguchi Masayoshi, Suzaki Takuya, Takeda Naoya, Okamoto Satoru, Soyano Takashi, Fujita Hironori, Sasaki Takema, Yoro Emiko, Takahara Masahiro, Nishida Hanna, Mori Tomoko, Tanaka Sachiko, Matsubayashi Yoshikatsu, Shinohara Hidefumi, Sakakibara Hitoshi, Hayashi Makoto, Kojima Mikiko

    More details

    4 2013 - 3 2016

    Grant number:25291066

    Grant amount:\17810000 ( Direct Cost: \13700000 、 Indirect Cost:\4110000 )

    Root nodules are controlled by the root-to-shoot-to-root negative feedback loop called autoregulation of nodulation (AON). In Lotus japonicus, AON is mediated by CLE-RS genes and the receptor kinase HAR1 that functions in the shoot. However, the mature structures of CLE-RS peptides and the molecular nature of CLE-RS/HAR1 signaling remain elusive. In this project we show that CLE-RS2 is a post-translationally arabinosylated glycopeptide derived from the CLE domain. Chemically synthesized CLE-RS glycopeptides cause significant suppression of nodulation and directly bind to HAR1 in an arabinose-chain-dependent manner. In addition, CLE-RS2 glycopeptide produced in the root is found in shoot xylem sap. We thus propose that CLE-RS glycopeptides are the long sought mobile signals responsible for the initial step of AON. In addition we show that, CLE-RS-HAR1 signaling activates the production of cytokinins in shoots, which have an SDI-like capacity to systemically suppress nodulation.

    researchmap

  • Evolutionary basis from arbuscular mycorrhizal symbiosis and root nodule symbiosis

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area) 

    KAWAGUCHI Masayoshi, SAITO Katsuharu, TAKEDA Naoya, SUZAKI Takuya, FUJITA Hironori, HANDA Yoshihiro, KOBAYASHI Yuki, SASAKI Takema, YORO Emiko, TAKAHARA Masahiro, YOSHIDA Chie, OKAMOTO Satoru, MIYAZAWA Hikota, SHINOHARA Hidefumi, MATSUBAYASHI Yoshikatsu, SOYANO Takashi, SAKAKIBARA Hitoshi, HAYASHI Makoto, SUGANUMA Norio, YAMADA Akiyoshi, EZAWA Tatsuhiro

    More details

    4 2010 - 3 2015

    Grant number:22128006

    Grant amount:\130910000 ( Direct Cost: \100700000 、 Indirect Cost:\30210000 )

    Through the molecular genetic analyses using a model legume Lotus japonicus, we provided additional evidence for the existence of common genetic regulatory mechanisms for nodule formation and shoot apical meristem (SAM) development. Besides, mathematical modeling showed that the reaction-diffusion dynamics is probably required for the SAM development. Nodule and its regulatory system might have been evolved in part by co-opting a gene network of the self-organized SAM development.
    <br>
    Genomes of an arbuscular mycorrhizal (AM) fungus and Endogonales fungi were decoded. Diversification of kinase-like genes was found in the symbiont genomes, indicating existence of signal transduction pathways that are required for symbiotic interaction between the fungi and the host plants. Transcriptome analysis of AM fungi and plants during AM development suggests that the symbiotic association is maintained by mutual complementation of metabolites such as fatty acids and phosphate between them.

    researchmap

  • 根粒共生系における感染と器官発生の同調的進行メカニズムの解明

    日本学術振興会  科学研究費助成事業 特別研究員奨励費 

    養老 瑛美子

    More details

    2013 - 2014

    Grant number:13J03940

    Grant amount:\2000000 ( Direct Cost: \2000000 )

    研究目的は、マメ科植物一根粒菌間の共生の成立において、異なる根の組織間で同時進行する二つの現象、感染と器官発生の相互作用の解明である。前年度、申請者らはnin変異体のアリルである過剰感染糸形成変異体daphneの解析により、NIN転写因子を介して感染を負に制御する新規経路について報告した。今年度は、daphne変異体を用いて、さらにNIN転写因子の下流で感染を負に制御する因子の探索を目的とした。最近、NIN転写因子の直接の下流遺伝子としてCLE-RS1/2ペプチド遺伝子が同定され、CLE-RS1/2ペプチドは根粒数を全身的に負に制御する因子として既に報告されていた。そこで、CLE-RS1/2ペプチドが、感染糸数と根粒数をともに抑制している可能性について解析した。まず、CLE-RS1/2ペプチド遺伝子をdaphne変異体背景で過剰発現させ、感染糸数が劇的に減少することを見出した。次に、CLE-RS1/2ペプチドの受容体として同定されているHAR1やKLAVIERの感染糸形成抑制への関与の有無を接木実験により検証した。その結果、HAR1とKLAVIERは根粒形成の抑制と同様、地上部において感染糸抑制に関与することが明らかになった。しかしながら、har1変異の存在下でもNIN遺伝子の過剰発現により感染糸数が減少したため、NIN転写因子の下流でCLE-RS1/2ペプチドは感染糸数の抑制に機能しているが、それとは独立に機能する別の下流因子の存在も示唆された。さらに、感染糸数と根粒数の制御の共通性が見えてきたことから、根粒数の制御に関与する未解析の遺伝子PLENTYについて研究を進めた。 PLENTY遺伝子を新たに同定し、シロイヌナズナにおいて糖鎖修飾酵素遺伝子(HPAT)と相同であり、ミヤコグサPLENTYが糖鎖修飾を介して根粒形成を制御するメカニズムを提案した。

    researchmap

▼display all