Updated on 2024/10/07

写真b

 
YAMADA Yuji
 
*Items subject to periodic update by Rikkyo University (The rest are reprinted from information registered on researchmap.)
Affiliation*
College of Science Department of Mathematics
Graduate School of Science Doctoral Program in Mathematics
Graduate School of Science Master's Program in Mathematics
Title*
Associate Professor
Degree
博士(理学) ( 京都大学 )
Research Theme*
  • 2次元格子上の可解な統計力学的な模型について研究している。非線形でありながら解くことのできる『可積分系』は、ソリトン方程式から場の量子論にまで現れ、Lie環の表現論などにも寄与しながら発展を続けている。可解格子模型の構成、およびその相関関数の求め方を中心に研究をしている。

  • Research Interests
  • 相転移

  • phase transitions

  • quantum groups

  • solvable lattice models

  • hypergeometric function

  • Campus Career*
    • 4 2011 - Present 
      College of Science   Department of Mathematics   Associate Professor
    • 4 2011 - Present 
      Graduate School of Science   Master's Program in Mathematics   Associate Professor
    • 4 2011 - Present 
      Graduate School of Science   Doctoral Program in Mathematics   Associate Professor
    • 4 2003 - 3 2011 
      College of Science   Department of Mathematics   Lecturer
    • 4 2005 - 3 2011 
      Graduate School of Science   Master's Program in Mathematics   Lecturer
    • 4 2005 - 3 2011 
      Graduate School of Science   Doctoral Program in Mathematics   Lecturer
    • 4 1996 - 3 2003 
      College of Science   Department of Mathematics   Full-time Research Assistant

    ▼display all

     

    Research Areas

    • Natural Science / Algebra

    Research History

    • 4 2011 - Present 
      RIKKYO UNIVERSITY   Graduate School of Science Field of Study: Mathematics   Associate Professor

      More details

    • 4 2011 - Present 
      RIKKYO UNIVERSITY   Graduate School of Science Field of Study: Mathematics   Associate Professor

      More details

    • 4 2011 - Present 
      RIKKYO UNIVERSITY   College of Science Department of Mathematics   Associate Professor

      More details

    • 4 2003 - 3 2011 
      RIKKYO UNIVERSITY   College of Science Department of Mathematics   Lecturer

      More details

    • 4 1996 - 3 2003 
      RIKKYO UNIVERSITY   College of Science Department of Mathematics   Full-time Research Assistant

      More details

    • 4 1995 - 3 1996 
      Kyoto University   Research Institute for Mathematical Sciences

      More details

    ▼display all

    Education

    • - 3 1995 
      Kyoto University   Graduate School, Division of Natural Science

      More details

      Country: Japan

      researchmap

    • - 3 1990 
      Kyoto University   Graduate School, Division of Natural Science

      More details

      Country: Japan

      researchmap

    • - 3 1988 
      Waseda University   Faculty of Science and Engineering

      More details

      Country: Japan

      researchmap

    Papers

    • CLASSIFICATION OF SOLUTIONS TO THE REFLECTION EQUATION FOR THE CRITICAL Z(N)-SYMMETRIC VERTEX MODEL I Peer-reviewed

      Yuji Yamada

      NEW TRENDS IN QUANTUM INTEGRABLE SYSTEMS   451 - 498   2011

      More details

      Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:WORLD SCIENTIFIC PUBL CO PTE LTD  

      We classify and list up all the meromorphic solutions K(z) to the reflection equation associated to the critical Z(N)-symmetric vertex model under two assumptions that none of the diagonal elements is constantly zero and that there is at least a pair of elements K-b(a)(z)K-a(b)(z) not equal 0 We make explicit the matrix elements of K(z), parameters they have and the relations among parameters.

      researchmap

    • Reflection equation for the N=3 Cremmer-Gervais R-matrix

      Kohei Motegi, Yuji Yamada

      JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENTP04005   1 - 32   4 2010

      More details

      Language:English   Publishing type:Research paper (scientific journal)   Publisher:IOP PUBLISHING LTD  

      We consider the reflection equation of the N = 3 Cremmer-Gervais R-matrix. The reflection equation is shown to be equivalent to 38 equations which do not depend on the parameter of the R-matrix, q. Solving those 38 equations, the solution space is found to be the union of two types of spaces, each of which is parameterized by the algebraic variety P(1)(C) x P(1)(C) x P(2)(C) and C x P(1)(C) x P(2)(C).

      DOI: 10.1088/1742-5468/2010/04/P04005

      researchmap

    • A remark on solutions of reflection equation for the critical Z(N)-symmetric vertex model

      Y Yamada

      JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL37 ( 2 ) 521 - 535   1 2004

      More details

      Language:English   Publishing type:Research paper (scientific journal)   Publisher:IOP PUBLISHING LTD  

      We consider solutions to the reflection equation for the critical Z(N)-symmetric vertex model, which is the trigonometric limit of the elliptic Z(N)-symmetric R-matrix of Belavin. These critical R-matrices have two parameters u and. The transfer matrices T(u, eta) constructed from this R-matrix R(u, eta) under the cyclic boundary condition are commutative among different u when eta is in common, [T(u, eta), T(v, eta)] = 0. We prove that an arbitrary solution to the reflection equation is independent of the parameter eta.

      DOI: 10.1088/0305-4470/37/2/019

      researchmap

    • Segre-threefold and N=3 Reflection Equation,

      山田 裕二

      Phys. Lett. A,298 ( 17 ) 350 - 360   1 1 2002

      More details

      Language:English   Publishing type:Research paper (other academic)  

      researchmap

    • Face Models with Continuous Parameters and Its Relation to Z_N-Symmetric Vertex Model of Belavin,

      山田 裕二

      Comment. Math. Univ. Sancti Pauli,48 ( 1 ) 49 - 76   1 1 1999

      More details

      Language:English   Publishing type:Research paper (other academic)  

      researchmap

    • Bethe ansatz equations for the broken Z(N)-symmetric model

      Y Yamada

      JOURNAL OF STATISTICAL PHYSICS82 ( 1-2 ) 51 - 86   1 1996

      More details

      Language:English   Publishing type:Research paper (scientific journal)   Publisher:PLENUM PUBL CORP  

      We obtain the Bethe ansatz equations for the broken Z(N)-symmetric model by constructing a functional relation of the transfer matrix of L-operators. This model is an elliptic off-critical extension of the Fateev-Zamolodchikov model. We calculate the free energy of this model on the basis of the string hypothesis.

      researchmap

    • ALGEBRAIC DERIVATION OF THE BROKEN ZN-SYMMETRIC MODEL

      K HASEGAWA, Y YAMADA

      PHYSICS LETTERS A146 ( 7-8 ) 387 - 396   6 1990

      More details

      Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

      researchmap

    ▼display all

    Misc.

    • ヤン・バクスター方程式--統計力学における可積分性--,

      白石潤一, 山田裕二

      数理科学 ( 504 ) 42 - 48   1 6 2005

      More details

      Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Publisher:サイエンス社  

      researchmap

    • イジング模型,頂点模型,面模型 …",

      山田 裕二

      数学セミナー,44 ( 1 ) 17 - 21   1 1 2005

      More details

      Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Publisher:日本評論社  

      CiNii Article

      researchmap

    Research Projects

    • 柏原-三輪模型の準三角準HOPF構造

      日本学術振興会  科学研究費助成事業 

      More details

      4 2005 - 3 2008

      Grant type:Competitive

      researchmap

    • Relation between automorphic forms and zeta functions associated with prehomogeneous vector spaces

      Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research 

      SATO Fumihiro, HIGA Tatsuo, KAKEI Saburo, IBUKIYAMA Tomoyoshi, HIRONAKA Yumiko, KIMURA Tatsuo

      More details

      2004 - 2007

      Grant number:16340012

      Grant amount:\16380000 ( Direct Cost: \15300000 、 Indirect Cost:\1080000 )

      The main problems we investigated in this research project are
      (1) To identify the zeta functions associated with prehomogeneous vector spaces with some kind of zeta functions attached to automorphic forms
      (2) To construct a theory of(local) functional equations which is not covered by the theory of prenomogeneous vector spaces. The results we obtained are as follows :
      (1) According to the classification theory due to Sato and Kimura, irreducible regular prehomogeneous vector spaces are classified into 5 series of classical type and 24 spaces of sporadic type. We identified the zeta functions associated with 4 series of prehomogeneous vector spaces of classical type with the standard L-functions or Koecher-Maass zeta functions of certain real analytic Eisenstein series. One of the results which are necessary for the proof of these results is a new integral representation of the Siegel series (= p-part of the Fourier coefficients of Eisenstein series). As another application of the new integral representation, we proved a formula which connects the Siegel series to spherical functions on a p-adic semisimple symmetric space of the orthogonal groups.
      (2) We proved that, given a pair of homogeneous polynomials on Ra satisfying a local functional equation and a pair of nondegenerate dual quadratic mappings of R^m to R^n, then, the pull backs of the polynomials by the quadratic mappings also satisfy a local functional equation. This generalizes a result due to Faraut-Koranyi-Clerc and we can construct many examples of functional equations which are not covered by the theory of prehomogeneous vector spaces. We also classified nondegenerate dual quadratic mappings over quadratic spaces and proved that such quadratic mappings are in one to one correspondence to representations of a tensor product of 2 Clifford algebras.

      researchmap

    • 2次元の可解格子模型の代数的構造の研究

      立教大学  立教大学研究奨励助成金 

      More details

      4 2002 - 3 2004

      Grant type:Competitive

      個人研究

      researchmap

    • A study on relations between the theory of prehomogeneous vector spaces, the theory of group representations and the theory of automorphic forms

      Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research 

      SATO Fumihiro, HIRONAKA Yumiko, YAMADA Yuji, AARAKAWA Tsuneo, IBUKIYAMA Tomoyoshi, GYOJA Akihoko

      More details

      2000 - 2003

      Grant number:12440011

      Grant amount:\10800000 ( Direct Cost: \10800000 )

      In this research project, we investigated zeta functions of prehomogeneous vector spaces from the view points
      (1)relations between functional equations and representations of general linear groups,
      (2)relations to automorphic L-functions,
      (3)generalization of the theory to non-regular prehomogeneous vector spaces.
      (1)We showed that the functional equations of zeta functions are closely related to intertwining operators between degenerate principal series representations of general linear groups, and, using the relation, we obtained an integral expression of Eulerian type of the gamma matrices of functional equations. This enables us to identify the variable change in functional equations as an action of an element in the Weyl group of a general linear group, and to decompose functional equations into a product of more elementary functional equations. There exists a similar results for p-adic local zeta functions. As an application of p-adic theory, we investigated the Fourier coefficients of Elsenstein series of Sp(n) and GL(n) and the theory of spherical transforms on certain spherical homogeneous spaces.
      (2)We identified the Koecher-Maass series of real analytic Siegel Eisenstein series with a zeta function associated with a certain prehomogeneous vector space on which the Siegel parabolic subgroup of SO(n, n) acts. It is quite probable that this result can be extended to other classical groups. A considerable progress has been made in explicit calculation of zeta functions. We obtained an explicit expression of zeta functions in terms of the Riemann zeta function and the Mellin transforms of the Cohen Eisenstein series for more than 70 percent of irreducible regular reduced prehomogeneous vector spaces.
      (3)For non-regular prehomogeneous vector spaces, we developed a general theory of integral representations and the functional equation of the zeta integrals, which is a formal generalization of the theory for regular prehomogeneous vector spaces. We also gave the first example of explicit functional equations for non-regular spaces.

      researchmap

    • 2次元の可解格子模型の代数的構造の研究

      日本学術振興会  科学研究費助成事業 

      More details

      4 2000 - 3 2002

      Grant type:Competitive

      researchmap

    • 無限自由度の解析、特に2次元の可解格子模型の代数的構造について

      立教大学  立教大学研究奨励助成金 

      More details

      4 1997 - 3 2001

      Grant type:Competitive

      個人研究

      researchmap

    • SYMMETRIC PAIRS

      Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research 

      UZAWA Tooru, YAMADA Yuuji, AOKI Noboru, FUJII Akio, KUROKI Gen, HASEGAWA Kouji

      More details

      1998 - 2000

      Grant number:10440001

      Grant amount:\6100000 ( Direct Cost: \6100000 )

      For the grant period, we have carried out research on diverse aspects of symmetric pairs. A symmetric pair, in its most primitive form, is a group G together with a automorphism σ of order two. Symmetric pairs appear quite naturally in mathematics. For example, one can associate a symmetric pair to symmetric spaces by letting G be the group of isometries and σ the involution with respect to a base point. Simple Lie groups, if the base field is not of characteristic two, appear as symmetric pairs for the general linear group, with finitely many exceptions. We give a brief summary of results obtained.
      (a) Extension of basic theory to the characteristic two case. We have shown that the theory for Riemannian symmetric spaces carry over ; in particular, one has the notion of Satake diagrams.
      (b) Construction of a model for symmetric varieties and their compactifications over the ring of integers.
      (c) Arithmetical aspects. Connections with special values of the Epstein Zeta function and families of elliptic curves have been probed.
      (d) Physical aspects. Connections with the face models have been probed.

      researchmap

    • Restoration of symmetry in stochastic models on fractals

      Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research 

      HATTORI Tetsuya

      More details

      1997 - 1999

      Grant number:09640298

      Grant amount:\3500000 ( Direct Cost: \3500000 )

      A direct aim of the present research project was continue our study on the restoration of isotropy of stochastic models on fractals, with emphasis on tracing the global structure of the orbits of 'renormalization group' dynamical systems.
      The ultimate purpose is to find an entirely new and general method of analysis of asymptotic properties of stochastic models which contain the essence of the renormalization group philosophy which was an epoc in the mathematical physics, especially in the quantum field theories.
      Main research results during the term of the present project is as follows :
      1 We extended our renormalization group analysis of asymptotically one-dimensional diffusions on Sierpinski gasket to abc-gaskets and scale-irregular abb-gaskets. These are examples for which either global restoration of symmetry does not occur or lacks exact self similarity. We applied similar analysis to an anisotropic diffusion on Sierpinski carpet, which is a typical example of infinitely ramified fractals.
      2 We derived chiral U(1) anomaly, a mathematical phenomena unique to quantum field theories, from first principles. This is the first mathematically rigorous proof of chiral anomaly as a continuum limit of lattice quantum field theories with Wilson terms.
      3 Using a Taubelian type theorem of Y. Kasahara, we found a limit theorem on a certain weighted sum of independent stochastic variables, and applied it to an asymptotic evaluation of value-distribution of the zeta function.
      4 We found new elliptic solutions to the Yang-Baxter equation for a new face with 2N-2 real parameters. We also found the intertwining relation between the face model and the ZィイD2NィエD2-symmetric vertex model of Belavin.

      researchmap

    • フラクタルにおける等方性の漸近的回復

      日本学術振興会  科学研究費助成事業 

      服部 哲弥, 山田 裕二

      More details

      1996 - 1996

      Grant number:08640252

      Grant amount:\500000 ( Direct Cost: \500000 )

      本研究の目的は,フラクタル特にSierpinski carpetに代表されるinfinitely ramified fractals.の上の非等方拡散の等方性の回復を調べることであった。
      この問題は,フラクタル上の拡散の一意性やhomogeniz ationの問題の解決に必要な要素として知られる重要な問題であり,finitely ramified fractalに関しては著者を含めて多くの結果が得られていたが,infinitely ramified fractalsでは問題が格段に難しくなる.Fini tely ramified fractalsと同様,infinitely ramified fractalsでも等方性の完全な回復を予想するが,現時点では困難な問題であるので,パラメータについて一様な漸近的評価(弱い意味の等方性の回復)を目標とした。
      前フラクタル図形(最小単位を持ち,拡大する方向に自己相似な図形)の一つ,pre-Sierpinski carpetの上の非等方拡散を考える.この拡散の漸近的性質を特徴づける有効抵抗は,非等方拡散の場合はx軸方向とy軸方向で異なり,その比が非等方性を測る一つの重要な量となる.Pre-Sierpinski carpetをSierpinski carpetに近づけていくときの有効抵抗の比が漸近的に有界であることを本研究で証明し,これによって,等方性の弱い意味での回復が証明できた.
      証明は,フラクタルに特徴的な自己相似性を生かして,問題を再帰不等式に帰着させて完成した.この再帰不等式は有効抵抗を変分問題によって表現したときの試行関数を再帰的に構成することで証明した。より簡単な境界条件に対応する二つの調和関数を適切に組み合わせて,本来問題となる境界条件に対応する変分問題の試行関数を得た。

      researchmap

    • ヤコビー形式に関連した数論的関数の研究

      日本学術振興会  科学研究費助成事業 

      荒川 恒男, 山田 裕二, 比嘉 達夫, 佐藤 文広, 遠藤 幹彦

      More details

      1996 - 1996

      Grant number:08640069

      Grant amount:\1500000 ( Direct Cost: \1500000 )

      1.ヤコビー形式に付随したKoecher-Maassのディリクレ級数を構成し、その解析接続を得、関数等式を証明した。またヤコビー形式の空間と密接な関係にある半整数保型形式の空間のCohenのアイゼンシュタイン級数を導入し、そのSiegelの公式を求めた。半整数保型形式に付随するKoecher-Maassのディリクレ級数についても、ヤコビー形式の場合の結果を用いて、その関数等式などを得た。
      2.概均質ベクトル空間のゼータ関数をアイゼンシュタイン級数の周期積分として表現することを研究し、2次形式のゼータ関数などの場合にHecke-Siegelの公式の拡張にあたるものを得た。
      3.P進数体Kの上で定義され、一般化された積分で表示されたP-進関数が、解析関数であるための条件を、被積分関数とdistributionの言葉で表わした。
      4.多重ゼータ値に密接に関係する多重ゼータ関数の積分表示を研究し、多重ゼータ値の間の新しい関係式を得た。

      researchmap

    • 2次元の可解格子模型に関する研究

      More details

      Grant type:Competitive

      researchmap

    • Study on exactly solvable lattice models in two-dimension

      More details

      Grant type:Competitive

      researchmap

    ▼display all